Successive Approximations for Caputo-Fabrizio Fractional Differential Equations
نویسندگان
چکیده
Abstract In this work we deal with a uniqueness result of solutions for class fractional differential equations involving the Caputo-Fabrizio derivative. We provide on global convergence successive approximations.
منابع مشابه
Numerical Methods for Sequential Fractional Differential Equations for Caputo Operator
To obtain the solution of nonlinear sequential fractional differential equations for Caputo operator two methods namely the Adomian decomposition method and DaftardarGejji and Jafari iterative method are applied in this paper. Finally some examples are presented to illustrate the efficiency of these methods. 2010 Mathematics Subject Classification: 65L05, 26A33
متن کاملInitial time difference quasilinearization for Caputo Fractional Differential Equations
Correspondence: [email protected]. tr Department of Statistics, Gaziosmanpasa University, Tasliciftlik Campus, 60250 Tokat, Turkey Abstract This paper deals with an application of the method of quasilinearization by not demanding the Hölder continuity assumption of functions involved and by choosing upper and lower solutions with initial time difference for nonlinear Caputo fractional different...
متن کاملOn Quasilinearization Method for Hybrid Caputo Fractional Differential Equations
In this paper we present the methods of Quasilinearization and Generalized Quasilinearization for hybrid Caputo fractional differential equations which are Caputo fractional differential equations with fixed moments of impulse. In order to prove this results we use the weakened assumption of -continuity in place of local Hölder continuity.
متن کاملExistence of solutions of boundary value problems for Caputo fractional differential equations on time scales
In this paper, we study the boundary-value problem of fractional order dynamic equations on time scales, $$ ^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin [0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1
متن کاملPractical Stability of Caputo Fractional Differential Equations by Lyapunov Functions
The practical stability of a nonlinear nonautonomous Caputo fractional differential equation is studied using Lyapunov like functions. The novelty of this paper is based on the new definition of the derivative of a Lyapunov like function along the given fractional differential equation. Comparison results using this definition for scalar fractional differential equations are presented. Several ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tatra mountains mathematical publications
سال: 2022
ISSN: ['1210-3195', '1338-9750']
DOI: https://doi.org/10.2478/tmmp-2022-0009